The third resonance, at 55.7 ppm, also behaves like the resonance of a bound species. The ${}^{13}C{}^{-1}H$ dipolar coupling corresponding to this resonance is inhomogeneous, which can be the case only if there is no appreciable ¹H spin diffusion from the methyl protons to other protons in the system. Each molecule of this species must therefore be in a region that is relatively isolated from protons not part of the molecule itself. Adsorption of a series of alcohols on HY indicates that there is a steric restriction associated with the site corresponding to the 55.7-ppm resonance in the methanol system. Access to this site is denied in zeolite samples activated at 500 and 600 °C, arguing against identifying the 55.7-ppm peak with a defect Al-O-CH₃ species. We interpret these data as indicating the adsorption of methanol and ethanol into the β cages of HY zeolite. Adsorption into the β cage probably requires a distortion of the 6-ring aperture, which has a diameter of approximately 2.2 Å,¹² to pass the alcohol. It is known that the framework of a zeolite can become distorted during the adsorption of a species with which it has a strong interaction.^{12,13} The diameter of methanol, calculated from the Stockmayer potential,^{12,14} is 2.4 Å; this compares to 2.6 Å for ammonia, which we know can exit the β cage.¹² We expect that the critical dimension perpendicular to the C-C bond axis of ethanol would be similar to the critical dimension of methanol. The higher alcohols, having bent C-C-C arrangements, will have substantially larger effective diameters. Methanol moieties interacting with the β -cage site are not desorbed by evacuation at 140 °C, a fact that also (1) argues for the isolation of the 55.7-ppm CH₃O species and (2) is consistent with the energetics one would expect for the 6-ring distortion that would be required for CH₃OH or CH₃OCH₃ desorption from a β cage, even if the 55.7-ppm CH₃O species were not mutually isolated.

Acknowledgment. Support from the National Science Foundation (Grant No. CHE-8306518) and use of the Colorado State University Regional NMR Center, funded by National Science Foundation Grant No. CHE-8208821, are gratefully acknowledged. The authors also acknowledge the assistance of Dr. James S. Frye.

Registry No. MeOH, 67-56-1.

Mechanisms of Longitudinal ²⁹Si Nuclear Magnetic Relaxation in Aqueous Alkali-Metal Silicate Solutions

Stephen D. Kinrade and Thomas W. Swaddle*

Contribution from the Department of Chemistry, The University of Calgary, Calgary, Alberta, Canada T2N 1N4. Received May 6, 1986

Abstract: Silicon-29 longitudinal NMR relaxation times (T_1) have been measured by the inversion-recovery method over a range of solution compositions and temperatures (0 to +100 °C) for several of the silicate species which occur in solutions of silica in H₂O-D₂O alkali-metal hydroxide (MOH) solutions. At sufficiently high temperatures, Si-Si chemical exchange causes gross averaging of the apparent T_1 values so obtained, this becoming evident at ~20 °C for $[M^+]$: $[Si^{1V}] = 1.0$:1 and at higher temperatures for higher $[M^+]$: $[Si^V]$ ratios. The predominant relaxation process evidently involves dipole-dipole interactions between ²⁹Si and M⁺ nuclei (M = Na, K, Rb), with minor contributions from the ²⁹Si-¹H dipole-dipole mechanism. Contributions to T_1^{-1} from the spin-rotation mechanism are apparent for the smaller silicate species, but in general are of minor importance. These observations explain why previously reported T_1 values for ²⁹Si in aqueous alkali-metal silicates were much shorter than for other silicon compounds, such as organosilanes, and varied markedly from study to study because of differing experimental conditions.

An understanding of the dependence of the longitudinal nuclear magnetic relaxation time T_1 on sample composition and conditions is essential if quantitative NMR spectra are to be obtained, and can also provide useful information concerning molecular structure and dynamics. In the case of ²⁹Si NMR of (HO)₃SiO⁻ and its polymers in aqueous alkaline solution, reported T_1 values are unusually short for silicon compounds^{1,2} and range from about 0.5 s in a solution containing 2 mol kg^{-1} of Si^{1V} and 6 mol kg^{-1} of $Na^+{}^3$ to 26 s in one containing <0.05 mol I^{-1} of Si^{1V} and 0.6 mol L^{-1} of Na⁺⁴ for the dimer at 25 °C. This paper explores the reasons for this relative shortness of T_1 in aqueous silicates and for its variability.

Early on, it was suggested³ that such efficient ²⁹Si relaxation could arise from rapid interchange between protonated and deprotonated silanol groups which, having different chemical shifts, should generate an appropriate fluctuating magnetic field. Harris and Newman,⁵ however, noted that this field would be parallel to the external field B_0 and so could not cause longitudinal relaxation. Instead, they concluded from their observations of "aging" effects in silicate solutions contained in unlined glass NMR tubes that unidentified paramagnetic contaminants, introduced during sample preparation and/or by leaching from the NMR tubes, were probably the dominant factors controlling transverse (T_2) and longitudinal ²⁹Si relaxation.^{2,5} Recently,⁶ we demonstrated that temperature-dependent transverse relaxation of ²⁹Si in aqueous alkali-metal silicate solutions is due primarily to Si-Si chemical exchange mediated by $H_3SiO_4^-$. We now report evidence

⁽¹²⁾ Breck, D. W. Zeolite Molecular Sieves: Structure, Chemistry and Uses; Wiley: New York, 1974.
(13) Fyfe, C. A.; Kennedy, G. J.; DeSchutter, C. T.; Kokotailo, G. T. J. Chem. Soc., Chem. Commun. 1984, 541.

⁽¹⁴⁾ Hirschfelder, J. O.; Curtiss, C. F.; Bird, R. B. Molecular Theory of Gases and Liquids; Wiley: New York, 1954.

⁽¹⁾ Marsmann, H. NMR 1981, 17, 65.

^{(2) (}a) Harris, R. K. In *The Multinuclear Approach to NMR Spectros-*copy; Lambert, J. B., Riddell, F. G., Eds.; D. Reidel: Dordrecht, 1983; pp 343-359. (b) Knight, C. T. G.; Harris, R. K. Magn. Reson. Chem. Chem., in press.

 ⁽³⁾ Engelhardt, G. Z. Chem. 1975, 15, 495.
 (4) Sjöberg, S.; Öhman, L.-O.; Ingri, N. Acta Chem. Scand., Ser. A 1985. 39, 93.

⁽⁵⁾ Harris, R. K.; Newman, R. H. J. Chem. Soc., Faraday Trans. 2 1977, 73. 1204.

⁽⁶⁾ Kinrade, S. D.; Swaddle, T. W. J. Chem. Soc., Chem. Commun. 1986, 120

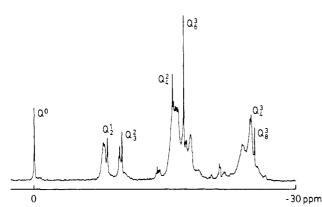


Figure 1. ²⁹Si NMR spectrum of a solution 2.17 mol kg⁻¹ in Si (95% ²⁹Si-enriched) with Na⁺:Si^{1V} = 1.0:1; recorded at 22.4 °C using 300 46.5- μ s (90°) pulses and a recycle time of 110 s (>5 $T_{1,max}$). Silicate anions represented are monomer (Q^0), dimer (Q_2^1), cyclic trimer (Q_3^2) and tetramer (Q_4^2), prismatic hexamer (Q_6^3),tetrahedral tetramer (Q_4^3 ; see text), and cubic octamer (Q_8^3).

to indicate that dipole-dipole interactions involving ²⁹Si and the alkali metal nuclei are primarily responsible for longitudinal ²⁹Si relaxation in these solutions, and that paramagnetic contaminants are unimportant in this respect if reasonable precautions are taken to exclude them.

Experimental Section

Samples were prepared directly in Teflon FEP® NMR tube liners by dissolving silica (obtained by hydrolysis of redistilled SiCl₄ or purchased from U.S. Services as 95% ²⁹Si-enriched SiO₂) in MOH (M = Na, K, or Rb) solutions at 100 °C for 1 h. Since the sole source of M⁺ was MOH, these solutions are conveniently characterized by the concentrations of Si^{IV} and M^+ . Unless noted otherwise, the solvent contained 75 wt % D₂O. Samples were inserted into a pressurizable NMR tube constructed from silicon-free materials,6 purged with nitrogen gas to minimize dissolved oxygen, and pressurized with nitrogen to 1.0 MPa. All ²⁹Si NMR spectra were obtained at 39.75 MHz on a Varian XL200 spectrometer with the exception of a single series acquired at 59.61 MHz on a Nicolet 300. Glass coil supports in the Varian probehead were replaced with equivalent parts machined from Vespel polyimide resin to ensure a flat spectral baseline. Longitudinal relaxation times were measured by the inversion recovery method, and gated ¹H decoupling was employed in nuclear Overhauser enhancement (NOE) measurements. Among the forest of signals that can appear for ²⁹Si-enriched solutions, singlets corresponding to the totally symmetric species are the easiest to follow over varying sample conditions (Figure 1). The Q_z^y symbol is used to denote a Si center with y coordinated bridging oxygens and (4 - y)terminal hydroxy groups, and, when applicable, z indicates the number of equivalent centers in a totally symmetric anion.

Even at the lowest temperatures employed, Si-Si exchange was sufficiently rapid⁶ that T_2 was less than T_1 in all solutions. Small increases in T_1 were observed when air-saturated solutions containing 2.17 mol kg⁻¹ of each of Si^{1V} and Na⁺ were purged of O₂ with pure N₂; the corresponding unpaired electron (UE) relaxation contribution, $T_{1UE(O_2)}^{-1}$. was calculated from the T_1 differences and ranged from 0.04 s⁻¹ for the monomer to ≤ 0.01 s⁻¹ for the largest species, and is similar in magnitude to findings with organosilicon compounds saturated in O₂.⁸ Dissolved oxygen was removed for all other NMR experiments.

Results and Discussion

Table I and Figure 2 present T_1 data as a function of temperature for a solution in which $[Na^+] = [Si^{IV}] = 2.17 \text{ mol kg}^{-1}$ (i.e., concentration ratio 1.0:1). Gross averaging of T_1 values for the various Si centers is evident above 20 °C, and this is attributable to rapid Si-Si exchange during the inversion-recovery pulse sequence, as revealed by line-broadening observations.⁶ When exchange averaging can be disregarded, e.g., in these 1.0:1 solutions below 20 °C, T_1 is seen to increase with temperature for the larger and less flexible silicate anions, most notably for the symmetric Q³-containing species, which molecular models show to be the most

Table I. ²⁹Si Longitudinal Relaxation Rates $(T_1^{-1})^{a,b}$

	temp/°C	Q ⁰	Q_2^1	Q ₃ ²	Q_4^2	Q ₆ ³	Q4 ³	Q ₈ ³	
	3.3	0.16	0.17	0.13	0.14	0.10	0.10	0.10	
	15.2	0.21	0.23	0.16	0.14	0.08	0.08	0.08	
	22.4	0.26	0.26	0.22	0.17	0.06	0.08	0.08	
	30.6	0.29	0.30	0.27	0.20	0.07	0.10	0.08	
	38.8	0.32	0.34	0.32	0.26 ^c	0.10	0.13	0.11	
	55.0	0.37	0.36	0.36	0.31°	0.21	0.23 ^c	0.15	
	68.0	0.31	0.31 ^c	0.32 ^c	0.31°	0.29	0.29 ^c	0.21	
	86.7	0.28	0.29 ^c	0.29 ^c	0.29 ^c	0.29	0.29 ^c	с	

^aIn seconds⁻¹ with error typically $\pm 5\%$. ^bFor a solution 2.17 mol kg⁻¹ in Si (95% ²⁹Si-enriched) with Na⁺:Si^{IV} = 1.0:1. ^c Peak indistinct from nearest neighbors.

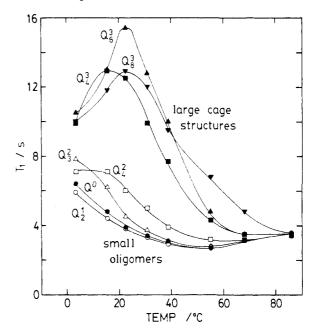


Figure 2. Temperature dependence of longitudinal relaxation time for a solution 2.17 mol kg⁻¹ in Si (95% ²⁹Si-enriched) with Na⁺:Si^{1V} = 1.0:1.

rigid. In accordance with the special stability expected for a silicate anion consisting exclusively of $(SiO)_3$ rings,⁷ the previously unidentified singlet at about -25.6 ppm relative to Q^0 is tentatively assigned to the tetrahedral tetramer $Si_4O_{10}^{4-}$ (Q_4^3 , which models show to be very rigid but unstrained), as is consistent with the location of the singlet slightly downfield of the cubic octamer (Q_8^3) peak as well as with the marked increase in T_1 (Figure 2) and rapid shift of the line to higher field relative to Q^0 as the temperature is increased.

When the averaging effect of Si-Si chemical exchange is allowed for, it should be possible to account for the observed values of T_1^{-1} in terms of contributions T_{1UE}^{-1} from the presence of species with unpaired electrons, T_{1SC}^{-1} from scalar coupling, T_{1SA}^{-1} from shielding anisotropy, T_{1SR}^{-1} from the spin-rotation mechanism, and T_{1DD}^{-1} from nuclear magnetic dipole-dipole interactions.^{1,9,10}

$$T_1^{-1} = T_{1UE}^{-1} + T_{1SC}^{-1} + T_{1SA}^{-1} + T_{1SR}^{-1} + T_{1DD}^{-1}$$
(1)

As noted above, dissolved oxygen makes at most a trivial contribution to T_{1UE}^{-1} , and was in any case removed from the solutions. Contributions to T_{1UE}^{-1} from other paramagnetic species were negligible; the solutions were prepared and handled in Teflon equipment to obviate leaching of contaminants, and consistent T_1 data were obtained from solutions made with silica from different sources. The T_1 data reported here are also consistent with those listed by Harris,² once the influences of solution composition and temperature, as analyzed below, are taken into account.

⁽⁷⁾ Harris, R. K.; Knight, C. T. G. J. Chem. Soc., Faraday Trans 2 1983, 79, 1539.

⁽⁸⁾ Levy, G. C.; Cargioli, J. D.; Juliano, P. C.; Mitchell, T. D. J. Am. Chem. Soc. 1973, 95, 3445.

⁽⁹⁾ Harris, R. K. Nuclear Magnetic Resonance Spectroscopy; Pitman: London, 1983; pp 85-91.

⁽¹⁰⁾ Ando, I.; Webb, G. A. Theory of NMR Parameters: Academic Press: London, 1983.

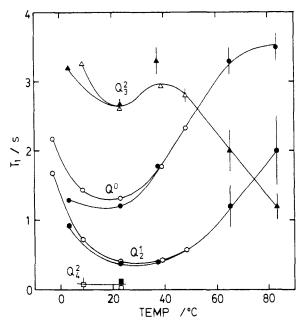


Figure 3. Temperature dependence of longitudinal relaxation for a solution 2.17 mol kg⁻¹ in Si with Na⁺:Si^{1V} = 4.0:1; $B_0 = 4.70$ T (solid symbols) and 7.10 T (open symbols).

Scalar coupling can be disregarded as a source of longitudinal relaxation, since no nuclei with resonant frequencies near that of ²⁹Si were present.^{5,8} Any significant contributions to T_1^{-1} from shielding anisotropy would be detectable through its second-power dependence on B_0 ,^{9,10} but in no case was the ²⁹Si relaxation rate increased when B_0 was increased from 4.70 to 7.05 T (Figure 3). On the contrary, relaxation rates T_1^{-1} were slightly *reduced*, below 20 °C, as a result of this increase in B_0 , which suggests that, whatever the principal relaxation mechanism, the extreme narrowing condition (correlation time << reciprocal of the Larmor precession frequency)^{9,10} ceases to be strictly valid for these solutions at low temperatures.

For the less condensed species, the modest shortening of T_1 with rising temperature (cf. Figure 2, discounting T_1 averaging above 20 °C) evidently reflects a contribution from the spin-rotation mechanism, since this is the only mechanism that would of itself give this kind of temperature dependence.^{9,10} For the larger silicate species, this effect is greatly reduced, which is in accordance with expectations for the spin-rotation mechanism since whole-molecule rotation is limited, and internal rotation is, in the case of Q³ centers at least, impossible.

This leaves the dipole-dipole mechanism as the probable chief cause of ²⁹Si longitudinal relaxation in alkaline aqueous silicate solutions. The only nuclei present in these solutions that could be responsible for these processes are ¹H and ²D from the H_2O/D_2O solvent and the M⁺ nuclei (²³Na, in our initial experiments). The fractional contribution $T_{1\text{DDH}}^{-1}/T_1^{-1}$ of ²⁹Si⁻¹H dipole-dipole relaxation (DDH) to the total longitudinal relaxation rate, calculated from the NOE data, was significant only at low temperatures, decreasing eight-fold from 0 to 60 °C (Figure 4). In absolute terms, T_{1DDH}^{-1} was smallest for the silicate oligomers of high molar mass and decreased with rising temperature for all silicate species. It was not possible to determine whether the DDH process was intra- or intermolecular, 10 but in any case it was never a major contributor to T_1 relaxation of ²⁹Si, as the close similarity of T_1 values in 75 and 99% D_2O/H_2O proved. If the contribution of the DDH process was not important, that of the deuterium dipole-dipole (DDD) mechanism was necessarily even less so, since, whether the dipole-dipole interaction is inter- or intramolecular, the ratio of the DDD and DDH contributions at mole fractions $f_{\rm D}$ and $f_{\rm H}$ is determined largely by the squares of the respective magnetogyric ratios $\gamma_{\rm D}$ and $\gamma_{\rm H}$.¹⁰

$$T_{1\text{DDD}}^{-1}/T_{1\text{DDH}}^{-1} = 8\gamma_{\text{D}}^{2}f_{\text{D}}/3\gamma_{\text{H}}^{2}f_{\text{H}} = 0.189 \text{ for } 75\% \text{ D}_{2}\text{O}$$
(2)

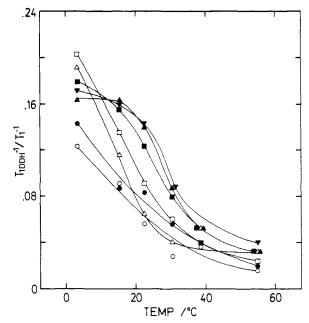


Figure 4. Temperature dependence of the proportional DDH contribution to T_1 relaxation. Solution composition and symbols are as in Figure 2.

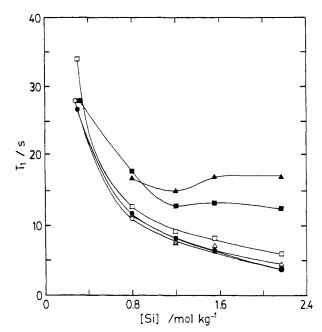


Figure 5. Si concentration dependence of longitudinal relaxation at 22.4 °C for ²⁹Si-enriched solutions with $Na^+:Si^{IV} = 1.0:1$. Symbols are as in Figure 2.

When, however, the concentrations of Na⁺ and Si^{IV} were increased with a fixed concentration ratio of 1.0:1, longitudinal relaxation was clearly accelerated (Figure 5). Although some of this additional relaxation was demonstrably due to DDH interactions, especially in the smaller silicate anions, the proportional contribution of DDH relaxation to T_1^{-1} actually decreased at the higher Si^{1v} concentrations (Figure 6). When the Na⁺:Si^{1v} concentration ratio was increased from 1.0:1 to 4.0:1 at constant $[Si^{1V}] = 2.17 \text{ mol } kg^{-1}$, T_1 was shortened for all four species studied, especially the dimer Q_2^1 and the cyclic tetramer Q_4^2 (Figures 3 and 7; cf. Figure 2). Clearly then, the sodium ion concentration exerted a major influence on T_1 . It may also be noted that, since Si-Si chemical exchange is slower at higher pH because of secondary deprotonation of the silicate anions,⁶ the onset of exchange averaging of T_1 values occurs at higher temperatures in Figure 3 than in Figure 2. It is significant that, of the four species under consideration here, those (Q⁰ and Q³) for which the

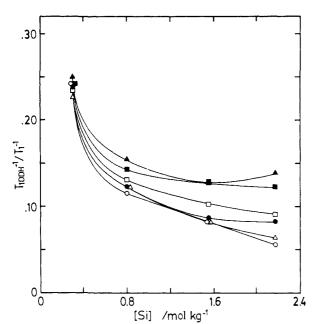


Figure 6. Si concentration dependence of the proportional DDH contribution to T_1 relaxation at 22.4 °C. Solution composition and symbols are as in Figure 5.

least T_1 shortening was observed were also those which appear to be most susceptible to secondary deprotonation.⁶

Thus it becomes apparent that the primary cause of the relatively rapid longitudinal relaxation in aqueous alkali-metal silicate solutions is dipole-dipole interaction between ²⁹Si and the nuclei of the counterion Na⁺ or, more generally, M⁺ ("DDM" mechanism).

$$T_1^{-1} \sim T_{1\text{DD}}^{-1} = (T_{1\text{DDH}}^{-1} + T_{1\text{DDM}}^{-1}) \sim T_{1\text{DDM}}^{-1}$$
 (3)

This was substantiated by the observation of very different values and temperature dependences of T_1 when Na⁺ was replaced by $M^+ = K^+$ or Rb⁺ (Figure 7). Incontrovertible proof of the predominance of the DDM mechanism could be obtained through appropriate NOE experiments, but a decoupler operable at the resonance frequencies of the various M⁺ is not available to us, and in this respect our conclusion remains tentative.

The relative efficacy $Na^+ > Rb^+ >> K^+$ in producing longitudinal relaxation of ²⁹Si remains to be explained. Calculations based on an assumed intermolecular dipole-dipole relaxation mechanism¹⁰ gave values of T_{1DD} that were some 10⁵-fold too long, so an "intramolecular" process involving (entirely reasonably) a silicate-M⁺ ion pair that is long-lived on the T_1 time scale must be invoked. Several factors combine to make a realistic calculation of T_{1DDM}^{-1} on this basis impossible; M⁺ ion-pair formation constants $K_{\rm IP}$ for the various silicate anions are unknown, as are the structures of the ion pairs and the M⁺-Si distances within them (upon which $T_{1\text{DDM}}$ has a sixth-power dependence¹⁰). There is evidence, however, that M⁺-anion "contact" distances in water vary surprisingly little,¹¹ and, furthermore, crude Fuoss-type calculations¹² suggest K_{IP} is nearly the same (6-7 L mol⁻¹) for the Na⁺-, K⁺-, and Rb⁺-H₃Si₄⁻ pairs. We can therefore expect¹⁰ that the relative $T_{1\text{DDM}}^{-1}$ values will be roughly proportional to $R = \sum [n\gamma_M^2 S(S+1)]$, where *n* is the fractional abundance of

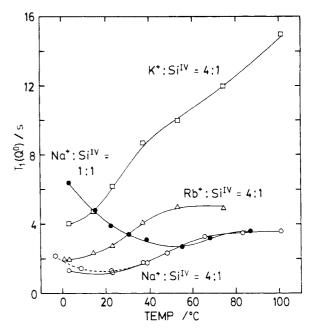


Figure 7. Temperature dependence of longitudinal relaxation time for the monomer Q⁰ in solutions containing 2.17 mol kg⁻¹ of Si and with M⁺:Si^{1V} as indicated. Broken line represents increase of B_0 to 7.05 from 4.70 T.

an isotope of spin S for a given M. For $M = {}^{23}Na$, (${}^{85}Rb + {}^{87}Rb$), and (${}^{39}K + {}^{41}K$), the respective values of $10^{-15}R$ are 19, 12, and 0.6, and these explain the qualitative trend in T_1^{-1} (Figure 7) satisfactorily.

Conclusion

The available evidence leaves little doubt that the major mechanism of longitudinal ²⁹Si relaxation in aqueous alkali-metal silicate solutions is a dipole-dipole interaction involving the counterion M⁺, probably through an intramolecular process within a silicate-M⁺ ion pair. Thus, measured T_1 values are influenced by both the nature and concentration of M⁺, as well as the temperature. Furthermore, at higher temperatures, chemical Si-Si exchange leads to apparent averaging of the T_1 values of the individual silicate species, and, since both the relative abundances of these species and the rates of Si-Si exchange are markedly temperature- and pH-dependent,⁶ the apparent T_1 values given by the inversion recovery method can vary considerably with conditions when averaging is occurring.

In retrospect then, it is not surprising that aqueous silicate ²⁹Si T_1 data in the literature are inconsistent, and the involvement of the cations in the DDM process explains why these T_1 values are shorter than for most other silicon compounds in the pure liquid state or in solutions not containing alkali-metal ions. The results of Harris and co-workers^{2,5} can be seen to be consistent with ours on the basis of the foregoing conclusions, without the need to invoke the presence of paramagnetic contaminants in the silicate solutions. Indeed, experiments in which paramagnetic contaminants were deliberately introduced into silicate solutions revealed only a minor influence of these solutes on T_1 .⁵

Acknowledgment. We thank the Natural Sciences and Engineering Research Council of Canada and the University of Calgary Research Grants Committee for financial assistance, the Alberta Oil Sands Technology and Research Authority for a scholarship (to S.D.K.), and Professor B. Sykes of use of his Nicolet 300 spectrometer.

⁽¹¹⁾ Sørensen, T. S.; Sloth, P.; Schrøder, M. Acta Chem. Scand., Ser. A 1984, 38, 735.

⁽¹²⁾ Fuoss, R. M. J. Am. Chem. Soc. 1958, 80, 5059.